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Abstract. The scanning method for the simulation of linear chains is extended to general 
models of branched polymers without loops. A branched chain grows in ‘time’ (namely, 
a number of steps from the origin). Therefore ( i )  in contrast to other simulation techniques, 
which are of a relaxation type, the chains are statistically independent and the statistical 
error can reliably be estimated, ( i i )  the probability of a chain is known and hence the 
entropy and ( i i i )  the scanning construction enables one to study geometrical properties 
which depend on time. For self-avoiding trees on a square lattice we obtain the relatively 
accurate estimates for the static critical exponents, v = 0.640 i 0.004 and 8 = 1.003 i 0.02, 
and for the connective constant @ = 5.1419iO0.O03. We also obtain critical exponents 
y, = 1.26 and v, = 0.82, which characterise the growth in time of the number of bonds and 
the gyration radius respectively. Application of the scanning method to more complex 
branched polymers is discussed. 

1. Introduction 

Various types of branched polymers are known. ‘Stars’, for example, have one branch- 
ing centre of relatively long linear chains. Proteins and nucleic acids, on the other 
hand, consist of a long backbone which is ‘decorated’ by small side chains. Also, 
randomly branched polymers can be formed by combining polyfunctional units (Flory 
1953). Dilute branched polymers of that type in a good solvent have been modelled 
by ‘lattice animals’ which are the ensemble of equally probable configurations of N 
connected self-avoiding bonds on a lattice. Lattice animals have loops; when loops 
are forbidden the structures are called self-avoiding lattice trees (SAT) or branched 
polymers without loops (Gaunt et a1 1982). Theoretical and numerical studies suggest 
that lattice animals with and without loops and with different extent of branching all 
belong to the same universality class and have the upper critical dimensionality eight 
(Zimm and Stockmayer 1949, Dobson and Gordon 1965, de Gennes 1968, Stauffer 
1978, Lubensky and Isaacson 1979, Gaunt 1980, Gaunt et a1 1980, 1982, Duarte and 
Ruskin 1981, Derrida and De Seze 1982, Margolina et a1 1984, Privman 1984, Caracciolo 
and Glaus 1985). Parisi and Sourlas (1981) have found a connection between this 
universality class in dimension d and the Lee-Yang edge singularity of the Ising model 
in d - 2; this enables one to calculate the entropy exponent 8 for d = 2 and 3 and the 
exponent v for d = 3. The known simulation techniques for lattice animals with and 
without loops are of a relaxation type. Some of them are based on changing the 
location of the bonds on the chain during the simulation (Stauffer 1978, Peters et a1 
1979, Gould and Holl 1981, Seitz and Klein 1981, Dickman and Schieve 1984). With 
another technique bonds are added to the chain or removed from it with a certain 
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stochastic process (Caracciolo and Glaus 1985, Glaus 1985). In this work we develop 
a new simulation technique for branched chains without loops (i.e. self-avoiding lattice 
trees), which is independent of the methods mentioned above. It is based on the 
concepts of the scanning method for generating linear chains, suggested by the author 
some time ago (Meirovitch 1982, 1985a, c). With the scanning method extended here, 
a lattice tree is started from the origin and grows shell-by-shell with the help of transition 
probabilities. The first shell ( t  = 1 )  consists of bonds connecting the origin to some 
(or to all) of its nearest-neighbour sites; these sites constitute ‘growth tips’ for the next 
step t = 2. At t = 2 another shell of bonds is determined, which connect these tips to 
their nearest-neighbour sites and the process continues. Thus, t can be considered as 
time and the shells are therefore isotime shells (see Alexandrowicz 1985). The scanning 
construction provides the probability of a tree and hence the entropy is known. Another 
advantage is that the sampled configurations are statistically independent, which 
enables one to estimate the statistical error by employing standard statistical methods. 
Moreover, the growth of a SAT in time enables one to study its geometrical properties. 
(Other step-by-step simulation procedures have also been employed, but for models 
of branched polymers which differ from the (equally probable) lattice trees studied 
here (Redner 1979, Alexandrowicz 1985).) For trees, where the branching is random, 
it proves convenient to perform the scanning construction in the framework of the 
grand canonical ensemble. However, for star polymers, proteins, etc, where the 
branching is fixed it would be more natural to use the canonical ensemble. Finally, 
the trees studied in this work are on a square lattice which enables one to test the 
Parisi and Sourlas (1981) prediction B = 1 and to estimate the exponent v. We also 
calculate critical exponents which characterise the growth in time of quantities such 
as the gyration radius. 

2. The model 

We study a model of self-avoiding bond trees (SAT) without loops on a square lattice. 
This model has been treated by Seitz and Klein (1981), Gaunt et a1 (1982), Family 
(1983) and Caracciolo and Glaus (1985). Let us denote by CN the total number of 
SAT of N bonds, which start from the origin of the coordinate system. The Boltzmann 
probability of SAT i is therefore 

P : ( N ) =  ~ / C N  ( 1 )  

S ,  = - k ,  c P:( N )  In P : ( N )  = k ,  In C, 

and the entropy is 

(2) 

where kB is the Boltzmann constant. For large N the number of configurations per 
site, a,, scales like 

(3)  
where the prefactor A and the connective constant p are lattice dependent while 8 is 
a critical exponent which is expected to be universal. The square gyration radius ( G k )  
scales with a critical exponent v 

SAT 

= cN ( N + 1 ) = A~ N - 

( C L ) -  Pr( N ) G f =  N2” (4) 
SAT 
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where G, is the gyration radius of SAT i. The grand partition function of the model is 
E ( P ) = l +  CNPN 

N = l  

where p is the bond activity. 
The grand canonical probability of configuration i is 

Fy = @"/E:( p )  

( N ) ~ =  C N C ~ P ~ / E .  
and the average number of bonds in the grand ensemble is 

N = l  

From (3) and ( 5 )  one obtains 

( 7 )  

which is expected to converge for p < pc = p - ' ,  where pc is the critical activity; for 
such values of p a very good approximation would be to carry out the summation up  
to a cutoff value t N  (rather than a), where t N  >> ( N)G.  

3. Exact scanning procedure 

Let us first describe an  exact scanning procedure for SAT in the grand canonical 
ensemble. A SAT is started from the origin and  constructed step-by-step, where at step 
t polyfunctional units of 0-4 bonds are added to the growth tips determined at step 
t - 1 (figure 1). Altogether, there are sixteen configurations of these five units, which 

SA1 ---- 

1 4 6 

L 1  1 "  
4 1  

Figure 1. A partial SAT at step f = 4 of the scanning construction. Each of the K, = 6 
growth tips (circular) will be continued by adding a local tree (LT).  The bonds of the shell 
configuration determined at r = 3 are denoted by broken lines. Tips which are not circled 
were terminated at f < 3 and will not be considered in future steps. Five LT and their 
degeneracies are presented in the lower part of the figure. The empty LT is denoted by a 
circle. 
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we call local trees (LT):  one LT of four bonds (it can be added only at the first step), 
four LT of three bonds, six of two bonds, and four of one bond; the empty LT, which 
leads to the termination of a growth tip, is also considered (figure 1). For the first 
step ( t  = 1) all sixteen LT has a non-zero transition probability and thus an LT of K 2  
bonds is selected with a Monte Carlo lottery and placed at the origin. These bonds 
define K 2  growth tips for t = 2 and the process continues; if the empty LT has been 
chosen at t = 1 one obtains the 'vacuum' tree, which is added to the sample and the 
construction of a new tree is started. At step t a SAT of N , - ]  bonds has already been 
generated at the t - 1 previous steps and the K ,  growth tips determined at step t - 1 
should be continued. Obviously, because of the excluded volume interaction between 
the LT and the bonds defining the growth tips, the maximum number of LT available 
for a tip is eight, rather than sixteen. Assume now that a set of K ,  local trees is added 
to the K ,  tips and that the excluded volume condition is not violated; we call such an 
arrangement of LT a shell configuration, denoting it by Bk ( t )  and its number of bonds 
by m k ( t )  (figure 1). In general the number of shell configurations is smaller than g K ~ .  
A shell configuration can be continued at the future steps in many ways. We call such 
a continuation a future SAT and denote its number of bonds by N f .  This enables one 
to define a future grand partition function for Bk ( t )  

where M k  ( t ,  N f )  is the number of future SAT of N f  bonds. The transition probability 
for Bk ( t )  is thus 

Notice that p k ( t ,  p )  is a conditional probability which depends on the partial SAT 

generated at the t - 1 past steps and on Bk ( t ). A shell configuration Bk ( t )  is selected 
with a Monte Carlo lottery according to the Pk and the process continues until the 
chain has been terminated at step I (because the empty LT has been chosen for each 
one of the tips). The  SAT^ of Ni bonds, thus constructed, has the probability P y ,  
which is the product of the I transition probabilities with which the shell configurations 
have been chosen: 

p N r p  = p p .  (11) 

Here p Z (  t, p )  is the transition probability of the shell configuration selected at step f 
and for simplicity we have abbreviated the notation for the corresponding future grand 
partition functions (9) to read ZL,,,. The second and the third equalities, which are 
based on (9) and (lo),  prove that the construction is exact, i.e. the configurations are 
selected with the ensemble probability PSG (6). It should be pointed out that a growth 
tip is considered only once during the process at a certain step t ,  where t is equal to 
the number of bonds on the chain (but not necessarily on the lattice) connecting the 
tip to the origin. Therefore t can be considered as time. However, this exact procedure 
is not feasible since already for the first step one has to calculate the grand partition 
function (5) for the whole system. 
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4. Approximate scanning procedures 

One can approximate the exact scanning procedure, described in the previous section, 
in many ways. We impose the following simplifications. (i) Not the whole future is 
taken into account, but only a small number b of future steps. (ii) This limited scanning 
is carried out for each tip separately, i.e. under the assumption that LT have not yet 
been added to the other tips. (i i i)  An adjustable parameter c replaces the activity p. 
The future grand partition function for tip I (1 s Is K , )  is thus (see (9)) 

E L ( t , c ,  b ) = c m ~ " ) ~  Mkp(Nf,  t, b, I)cNr (12) 

where k' denotes an LT, which can be added to tip I without violating the excluded 
volume conditions; m k . ( t )  is the number of bonds of local tree k' ( m k  ( t )  = 0-3 for 
t > 1). M k ,  is the number of future SAT of Nr bonds, which can be added to k' in b - 1 
future time steps. At this stage two remarks should be made. ( i )  For the empty LT 

( k ' =  l ) ,  which satisfies Z: = 1, we introduce another parameter e such that Z! = e. (ii) 
In our calculations we also define LT, which are based on two nearest-neighbour tips, 
employing b = 1; obviously, the maximal number of LT of such a pair is sixteen (of 
0-4 bonds). However, for the sake of simplicity we omit the parameter e from the 
equations and only describe the process in which each tip is treated separately. The 
transition probability for the local tree k' of tip I is 

p k ( f , c , b , I ) = E : , ( t , c , b ) ( ~ ~ L , ( t , c , b )  k ) - I  . (13) 

For each tip I (  1 G 1 s K , )  a set of pk is calculated and an LT is selected by a lottery. 
These LT are then added to the tips and the excluded volume condition is checked; if 
it is violated the tree is discarded and a new tree is started. In the other case the set 
of LT is accepted and the process continues. The probability of the shell configuration 
B : ( t )  thus chosen is (see (10)) 

Nr 

K !  

pF(f, c, b )  = n pF(t, c, b, I )  (14) 
/ = I  

and the probability of SAT i is (see (11)) 

Obviously P?(c, b )  is approximate (biased) and is not normalised over the ensemble 
of SAT but over a larger ensemble which also includes self-intersecting trees. However, 
one can define a normalised probability p y ( c ,  b )  over the ensemble of SAT by 

(16) F?( C,  b )  = P y (  C, b ) / A  
where 

A =  P p ( c ,  b ) < l .  
, € S A T  

A can easily be estimated from the attrition ratio 

A - n s u c c /  %tart (18) 
where nstan and nsucc are the number of chains started and succeeded (i.e. without 
violating the excluded volume condition) respectively. In order to determine the 
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optimal value of c one defines a free energy functional J (  p, c, 6 )  for the grand canonical 
ensemble, based on the approximate probability p: (16) 

J ( p , c , b ) / k , T =  P:(c,b)(lnP:(c,b)-N~Inp).  (19) 
SAT 

J (  p, c, b )  is never smaller than the exact free energy defined with PeG( p )  (6) and 
therefore c*, the optimal value of c, can be obtained by minimising J (  p, c, b )  with 
respect to c. One would expect that c*  > P ( e *  < 1) and c* + p ( e *  + 1) as b is increased, 
i.e. the approximation improves. 

The approximate scanning procedure described thus far can conveniently be pro- 
grammed for the computer since the growth tips are treated independently. However, 
sample attrition is expected to be significant for large N; it can be reduced by defining 
better scanning procedures in which b is increased and pairs or larger groups of tips 
are treated together. In the next section we show how the bias, introduced by the 
scanning method, can be removed. 

5. Corrected averages for the canonical ensemble 

In order to study the properties of SAT in the canonical ensemble one divides the grand 
canonical sample of n ( n  = nsucc) SAT into subsamples of size n( N) for SAT of N bonds. 
Thus an approximate but normalised probability P, (N, c, 6 )  for SAT i of N bonds in 
the canonical ensemble can be obtained from the grand canonical probability P:( c, b )  
(see (15)-(18)): 

P,(N,  c, b )  = Pt'(c, b ) I B ( N )  (20) 

B ( N )  - n ( W / % a r t .  (21) 

where 

Since P, (N, c, b )  is biased it would lead to incorrect statistical averages of the entropy 
and the gyration radius (see (2) and (4)):  

SN (c, b ) / h  = -E P , ( N ,  c, b )  In P , ( N ,  c, 6) (22) 

where the summations in (22) and (23) are carried out over the ensemble of SAT of N 
bonds. Obviously, S,+ (c, b )  is never larger than the correct SN (2). However, this bias 
can be removed by employing two different standard procedures, importance sampling 
(Hammersley and Handscomb 1964) and a generalised Monte Carlo procedure sug- 
gested by Schmidt (1983). With importance sampling the estimators for the exact 
values of G and S are 

(25) 

where I S  stands for importance sampling. One can also estimate with importance 
sampling averages in the grand ensemble. The average number of bonds ( 7 )  is 
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For an infinite sample the estimators (24)-(26) always lead to the correct ensemble 
averages (2) ,  (4) and ( 7 )  respectively; for a finite sample their statistical convergence 
depends on their standard deviations which are expected to decrease as the bias 
decreases. A practical criterion which enables one to verify that a statistical convergence 
has been attained is to check that the importance sampling results remain unchanged 
for different approximate scanning procedures (see Meirovitch 1985a, c). The Schmidt 
procedure enables one to extract from a sample selected with a biased probability 
P, ( N ,  c, b )  an effectively smaller sample in which SAT are weighted correctly with the 
Boltzmann probability P:( N )  (1). This process is performed as follows: The first SAT 
generated ( i )  is always accepted. The second one (j) is accepted with probability p,].  
If j has been accepted the sample contains the SAT i and j ;  in the other case i is 
accepted again with probability 1 -pv and the sample contains SAT i twice. Thus the 
third SAT is tested with respect to the SAT accepted at the second step and the process 
continues until the whole biased sample of n ( N )  SAT has been examined and an 
unbiased sample of n ( N )  SAT has been obtained. pv is defined as follows: 

(27) 
{ y, c, b ) / P , ( N ,  c, b )  i fP,(N,c,  b ) / P , ( N , c ,  b ) < 1  

otherwise. P v  = 

One can define an acceptance rate AR 

A R =  n ( N ) a c c , , l n ( N )  (28) 

where n ( A L e p  is the number of different SAT accepted to the unbiased sample. Note 
that for the Boltzmann probability Py( N )  ( l ) ,  A R  = 1 whereas for a biased probability 
PI ( N ,  c, b )  generally A R  < 1. However, one would expect A R  to increase as the approxi- 
mation improves. One can estimate the various averages directly from the unbiased 
sample without compensation (as is necessary in the case of importance sampling): 

and Z‘ means summation over the accepted sample where A stands for accepted. It 
should be pointed out that S,(A), in contrast to ~ L ( A ) ,  is always approximate (since 
the Pl(N, c, b )  are biased) and is expected to overestimate the correct entropy (2) 
(Meirovitch 1985c, d) .  On the other hand, we have argued that S N  (c, b )  (22) underesti- 
mates the entropy; therefore if the deviations of these entropies from the correct value 
are approximately equal, one would expect their average 3; to be a better approxima- 
tion than each one of them individually: 

3; = 4 (3 ,  (A) + 5, (c, b ) )  

where 3, ( c ,  b )  is the estimator for S ,  (c ,  6)  (22). Our interest in the properties of 3; 
stems from the fact that this average can also be calculated from a sample of chains 
obtained with any computer simulation technique and thus enables one to estimate 
the entropy approximately (Meirovitch 1985b, d) .  It has already been found that for 
several linear chain models constitutes a very good approximation for the entropy 
and it is important to check its properties also for branched structures. The extent of 
convergence of the estimators (29) and (30) can be deduced from the behaviour of A R  

during the simulation. For a small sample AR is relatively large since the first SAT is 
always accepted. As the sample increases A R  relaxes to its (smaller) constant value 
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and therefore the initial accepted sample, obtained before AR has been stabilised, 
should be discarded. Thus, the number of accepted SAT, n(N)accep, in the remaining 
sample can be considered as an effective sample size for the unbiased sample, which 
means that the standard deviation of extensive properties is expected to decrease as 
( N /  n(N)accep) l '**  

6. Results and discussion 

In this work we study SAT (without loops) on a square lattice as described in 0 2, 
employing an approximate scanning procedure, which is slightly more complex than 
that developed in 0 3 in that it is based on several types of local states. For the first 
step we define future grand partition functions E k ' (  t = 1, b = 2, c,, e,)  (12) for the 
various LT (1 a k ' a  16) using the scanning parameter b = 2, the activity parameter c, 
and the parameter e ,  for the empty LT(k'= 1). These define transition probabilities 
for t = 1 (13). For t > 1 three types of transition probabilities are employed. First the 
K ,  growth tips are visited in a predefined order and pairs of tips, which are nearest 
neighbours on the lattice, are identified in the following manner. We start by searching 
for a nearest-neighbour for the first tip; if it is not found the tip will be treated later 
independently and the search is continued for the next tip among the K, - 2 remaining 
ones. In the other case the two nearest-neighbour tips define a pair and the search 
for the next tip is carried out over the group of K ,  - 3 tips, etc. At the end of the 
process two groups, of kpair pairs and k, individual tips, are defined such that 2kpai,+ 
k, = K,. The transition probabilities for a pair are defined by calculating future grand 
partition functions s k '  of b = 1 for the two tips together rather than for each one 
separately. Also, these transition probabilities depend on parameters which are denoted 
cpalr and epair (see Q 3). The k, individual tips are treated separately one-by-one, using 
in most cases transition probabilities which are based on 6 = 2 and the corresponding 
parameters c2 and e2; however, for k2 of these tips the third future shell is partially 
occupied, which makes it easy to calculate transition probabilities which are based on 
b = 3. The parameters for this better approximation are denoted c3 and e3. These 
transition probabilities are utilised for selecting a set of LT (a  shell configuration) for 
the K ,  tips which is accepted if the excluded volume condition is not violated, as 
described in 0 2. 

The simulation has been carried out at p = 0.192 ( p - l =  5.2), which is lower than 
the expected critical activity pc = p- '  = 0.195. First we have carried out short runs in 
order to minimise the free-energy functional J (19) with respect to the various para- 
meters; the optimal values are presented in table 1. As one would expect the values 
of c are larger than p and they monotonically decrease as the approximation improves, 
from cpair = 0.47( b = 1) to c3 = 0.23(b = 3), which is only slightly larger than p = 0.192. 
An opposite trend is observed for the parameters e (besides e,)  where epai,=0.56 
increases to e3 = 0.88. Notice that a smaller value of the parameter e causes a decrease 
in the probability of the empty LT and thus increases the probability to generate larger 
SAT. Also, since e is a parameter of only one LT, J is expected to be less sensitive to 
changes in e than in c ;  this indeed is borne out. In the table, results are also presented 
for a worse scanning approximation based on b = 1 where all the tips are treated 
separately. As expected, the grand canonical free energy JJI = 0.17 and the average 
number of bonds NG(rs)-40 (26) are smaller than the corresponding values 0.194 
and 60 obtained for the better approximation. 
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Table 1.  Results for the optimal parameters C*  and e*, the minimum value of the grand 
canonical free-energy functional J (19) and the average number o f  bonds R" (26). The 
construction of SAT has been carried out up to a cutoff shell l,, = 150. Results are also 
presented for the worse approximation based on b = 1 .  

C *  e* J/150 N" 

Approximation b = 1 , 2 , 3  
Pairs ( f >  1 )  0.47 0.56 
b =2(f  = 1 )  0.3 0.4 -0.0194 - 60 
b = 2 ( 1 > 1 )  0.3 0.8 
b = 3 ( t >  1 )  0.23 0.88 
Approximation b = 1 
b =  l ( t 3 l )  0.54 0.93 -0.0170 - 40 

Our major calculation is based on two computer runs (each required 30 h of CPU 

time on an IBM3081) carried out with different random number sequences. This 
enables one to estimate the statistical error. The two grand canonical samples have 
then been unified into one larger sample from which subsamples of SAT of given 
N, 10 6 N s 140 have been defined. The bias of these samples has been corrected by 
both importance sampling and the Schmidt procedure. For the latter we have included 
in the samples only the SAT accepted after A R  (28) has been stabilised. Also, we have 
carried out calculations with the worse scanning approximation (based on b = 1) for 
N s 50 and verified that the importance sampling results are equal (within the statistical 
error) to those obtained with the better approximation. This gives confidence that 
convergence has been attained and thus the effective sample size is naccep, as discussed 
at the end of § 5 .  Some results for the entropy, the gyration radius, the sample size 
and the acceptance rate are presented in table 2. This table reveals that, as expected, 
the results for the approximate entropy S N ( c ,  b )  (22) are always smaller than the 
importance sampling values,  IS) (25), which are considered to be correct; the 
deviation increases with increasing N, i.e. as the bias increases. The accuracy of 3, (IS) 
can be checked only for N 6 11 where exact enumeration values are available (Gaunt 
et a1 1982). For N = 10 the exact value is a N  = 672 390 (see (3)) which is equal, within 
the statistical error, to our value 672 001 * 518. It should be pointed out that s!jc, b )  
(31) is very close to SN(is), which means that the results for S, (b ,  c) (22) and S,(A) 
(30) deviate almost equally from the correct entropy. As has been already pointed out 

Table 2. Results for the entropies S, (c, b )  (22), s, ( I S )  ( 2 5 )  and S y ( c ,  b )  ( 3 1 )  (expressed 
in units of k , (  N +  l ) ) ,  the gyration radius G:( is)  (24), the sample size n ( N ) ,  the number 
of accepted trees n(N) , , , , ,  and the acceptance rate A R  (28). N is the number of bonds. 
The statistical error is denoted by parentheses; for example, 1.616(8) = 1.616*0.008. 

N S,(C, b )  s, ( I S )  sy G < ( i s ) I N  n ( N )  n (N) , , , , ,  A R  

10 1.422 37 (4)  1.437 81 ( 7 )  1.437 92 ( 9 )  0.293 7 ( 3 )  1197 720 811  260 0.68 
30 1.54408 (7)  1 565 2 (8) 1.565 2 (4)  0.357 3 (6)  310990 130260 0.42 
50 1.569 5 (2)  1.593 6 ( 5 )  1.593 2 (7)  0.400(3) 103850 27950 0.27 
70 1.579 8 (4)  1.605 6 ( 9 )  1 .6044(9)  0.437 (6)  37 150 7 070 0.19 
90 1.586 l ( 7 )  1.612 ( 2 )  1.611 (8 )  0.461 (9)  13 680 1 900 0.14 

110 l .S89(2)  1.616 (8 )  1.612 (8 )  0.47 (2)  4 990 550 0.11 
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this behaviour is important in the context of a method which enables one to extract 
the entropy from a sample of chain conformations (Meirovitch 1985b, d). It should 
be emphasised that for the calculation of the critical exponent e we use the results of 
S,(IS) (25), rather than those of S y ( c ,  6) (31). It should also be noticed that the 
values of the approximate gyration radius (GL)c,b (not appearing in table 2) are always 
smaller than the values of GL(rs) (considered as correct), 0.270 being smaller than 
0.290 for N = 10, and 0.378 smaller than 0.472 for N = 110. This means that the SAT 

generated with the scanning method are too compact, as has also been observed for 
self-avoiding walks (Meirovitch 1985a). Finally, we emphasise the dramatic decrease 
of n( N )  and n( N)aC.ep as N increases. This is followed by a decrease in the acceptance 
rate AR, which constitutes, in addition to S N ( c ,  6 )  (22), a measure of the extent of 
bias, Obviously, the sample can be enriched with larger SAT by utilising better approxi- 
mations at activity values closer to pc. 

In order to estimate the critical exponents v and 0 and the connective constant p 
((3) and (4)) we employ a procedure suggested recently (Berretti and Sokal 1985), 
which takes into account corrections to scaling. This procedure is essential for obtaining 
reliable results. Since the data are too ‘noisy’, only the analytic correction 1/ N is 
considered and we fit the data to the functions 

(G:)- AG( N+g)*”  (32) 

exp(S/kB) / (N + 1) - Asp N N - e ( l  + s/ N )  (33) 
where g and s are parameters which should be optimised (notice that (32) has the 
same functional form as (33) to order 1 / N ;  we use it in order to be consistent with 
Caracciolo and Glaus (1985)). The main idea is to calculate for a given value of g, 
for example, several estimates for v ( v(Nmln)) based on values of G between N,,, 
and N,,,( N,,, << N,,,) where Nm,, increases while N,,, remains fixed. The best 
parameter g is the one which leads to the ‘flattest’ graph of v(N,,,), In order to 
estimate 8 and p reliably one needs highly accurate results for the entropy; therefore 
we use N,,, s 60 for which the statistical error is relatively low. Results for p and 0, 
for several values of the parameter s (using N,,, = 60),  are summarised in table 3. 
For both quantities the flattest graphs are observed for s = -0.3. However, our estimates 
for p and 0 are obtained by averaging their values for s = -0.2 to -0.5; the error of 
this average is defined as twice the standard deviation and it constitutes only a part 
of the systematic error, which also depends on N,,,, for example. The statistical error 
has been obtained by performing a similar analysis for the two smaller samples 
(discussed previously), which are based on different random number sequences. This 
last error, however, is relatively large for N,,,=60 and has been found to increase 
significantly for N,,, 2 65. On the other hand, for N,,, = 55 the statistical error is 
much lower while the partial systematic error is only slightly changed. The results 
with these errors combined are: 

N = 6 0  p =5.1428*0.0012 e = 1.009 + 0.046 

N = 5 5  p = 5.1410*0.0018 e = 0.996 * 0.015 

best p = 5.1419*0.003 e = 1.003 + 0.02. 

Our best estimates (the third line) have been obtained by averaging the values of the 
first two lines and adopting the errors of N =55. Our results for 0 agree with 
0 = 1.00*0.02 obtained by exact enumeration of SAT of N s 11 (Gaunt et a1 1982) and 
are slightly better than 0 = 1.001 f 0.08 obtained from a Monte Carlo simulation 



A new simulation of branched polymers 6069 

Table 3. Sets of results for p and !3 as functions of N,,, for several values of s for 
N,,,  = 60. They were obtained by a least-squares procedure based on equation (34). The 
flattest sets are observed for s = -0.3. 

N,," 

S 10 15 20 25 30 

Values of ,U 

-0.6 
-0.5 
-0.4 
-0.3 
-0.2 
-0.1 

0 

Values of 0 
-0.6 
-0.5 
-0.4 
-0.3 
-0.2 
-0.1 

0 

5.1454 
5.1444 
5.1438 
5.1428 
5.1423 
5.1413 
5.1048 

1.033 
1.023 
1.016 
1.006 
0.999 
0.989 
0.982 

5.1444 
4.1438 
5.1433 
5.1428 
5.1423 
5.1418 
5.1413 

1.026 
1.019 
1.013 
1.006 
0.999 
0.992 
0.986 

5.1428 
5.1428 
5.1423 
5.1418 
5.1413 
5.1408 
5.1402 

1.014 
1.011 
1.004 
0.998 
0.991 
0.984 
0.978 

5.1444 
5.1444 
5.1438 
5.1433 
5.1433 
5.1428 
5.1423 

1.027 
1.024 
1.017 
1.011 
1.008 
1.001 
0.995 

5.1433 
5.1433 
5.1428 
5.1428 
5.1423 
5.1423 
5.1418 

1.018 
1.015 
1.008 
1.006 
0.999 
0.997 
0.990 

(Caracciolo and Glaus 1985). Also,exact enumeration study of lattice animals has led 
to 0 = 1.OOiO.02 (Guttmann 1982); these estimates suggest that the Parisi and Sourlas 
(1981) prediction 0 =  1 is correct. Also our value for p agrees with k = 
5.1434iO0.0013*O.057 obtained by Caracciolo and Glaus (1985) and = 
5.14*0.01*0.26A0 by Gaunt et a1 (1982); our error, however, is smaller. All these 
estimates differ significantly from the value p = 3.88 obtained with a real space renor- 
malisation group technique (Family 1983). In  order to estimate v we have plotted 
v (N, , , )  as a function of 1/ N,,,  for various parameters g, as shown in figure 2. Such 
figures have been drawn for eight values of N,,, (55, 60, 65 . . .90).  For each figure 

I- -I 
gs14 

12 

V l 3  1 1  I: 
0.63 

1/35 1/30 1/15 1/10 
11" 

Figure 2. Plots of v as a function of 1/ N,,,, obtained for N,,, = 75 for several values of 
the parameter g ( fu l l  lines). These lines are extrapolated to I/N,,,=O (broken lines). 
The flattest graph is obtained for g = 10 and its extrapolation leads to ueXl rd  = 0.641. 
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the flattest graph has been extrapolated to 1/ Nmi, = 0 and the corresponding values 
veXtra have been determined. We have taken the mean value of the eight results for 
veXtra as our central estimate for v and twice their standard deviation as the error, 

v = 0.640 * 0.004. 

This value equals (within the errors) the Monte Carlo result of v = 0.640 * 0.004 * 0.004 
(Caracciolo and Glaus 1985) and Family’s value of v = 0.637. Another Monte Carlo 
study for SAT (Seitz and Klein 1981) has led to v=O.612, but without taking into 
account correction to scaling. Values of v = 0.57 and v = 0.62 have been obtained by 
Redner (1979) and Alexandrowicz (1985) respectively but, as has already been pointed 
out, their models of branched polymers differ from SAT; also, they have not carried 
out a correction to scaling analysis. Our result for v is very close to the estimates 
v = 0.64-0.66 obtained for lattice animals by various techniques (Stauffer 1978, Gould 
and Holl 1981, Derrida and De Seze 1982, Family 1983, Margolina et a1 1984, Privman 
1984); in particular, within the errors our value equals the Derrida-De Seze result of 
v = 0.6408 *0.0003 which is probably the best estimate for animals. This again suggests 
that animals with and without loops belong to the same universality class. 

Another aspect of the scanning procedure is the fact that it describes a growth 
mechanism of SAT under equilibrium conditions, i.e. the generated SAT are approxi- 
mately equally probable (1). It should be pointed out, however, that this mechanism 
does not seem to be physical mainly due to the fact that only the accepted SAT, which 
are determined a posteriori, are taken into account. However, for SAT of a given N 
one can study averages of the gyration radius G, and the number of bonds N, as 
functions of time. Alexandrowicz (1980, 1985) has defined exponents y ,  and v, for N, 
and G,, respectively, 

N, - t Y f  

G, - tu ’ .  

This means that G, - N “ ~ ’ y ~  or that 

(34) 

(35) 

v = VI/ Y l .  (36) 

Similar properties have also been studied by Havlin and Nossal (1984) who refer to 
the time steps as chemical shells. In our procedures time steps (shells) are well defined 
and therefore y ,  and v, can be calculated. It  should be pointed out that y ,  characterises 
the extent of branching. For a linear chain y ,  = 1; for an ideal tree (without excluded 
volume) y ,  = 2 (since v = a  and v, = $) (Zimm and Stockmayer 1949, de  Gennes 1968). 
Therefore, for a SAT, 1 < y ,  < 2. The significance of v, can be explained as follows: 
for each growth tip at step t a linear chain of t bonds can be defined, which connects 
the tip to the origin. The average end-to-end distance of such a chain is -t”’ for an 
ideal tree and 2 ” ’  for a SAT, where v, is expected to differ from i ,  the value for 
self-avoiding walks (SAW) (Flory 1953). Therefore, v, measures the compactness of 
the branched chain. We have calculated v, and y ,  for t = 3-21 for seven chains of 
N = 75,80, 85-100 and 110, using importance sampling, and have averaged the results 
for the different N. We have found that for values of t for which N ,  is not too close 
to N, G, and N ,  are independent of N. Log-log plots of N, and G, as functions of t 
are presented in figure 3. They lead to 

v, = 0.82 y ,  = 1.26 vr/ y, = 0.65. 
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1 3 5 7 9 11 15 20 
f 

Figure 3. Log-log plots o f  N ,  and G, as functions of t ,  having slopes of  y, = 1.26 and 
v, = 0.82, respectively. 

The fact that v,>! means that the branches are more open than SAW, in contrast to 
the behaviour in a melt where real chains become ideal. Also v , / y ,  is close to v = 0.64. 
It should be pointed out that Alexandrowicz (1985) obtained for his model T of 
branched polymers v, = 0.84 and y, = 1.35, which means that his chains are even more 
branched and stretched than the present ones. We recall, however, that his chains are 
not equally probable. 

7. Conclusions 

We have extended the concepts of the scanning method to branched polymers without 
loops and obtained for self-avoiding trees on a square lattice relatively accurate results 
for 8, p and v, which agree with values obtained before. We have also obtained 
estimates for the exponents v, and y,. Our results for 8 support the Parisi and Sourlas 
(1981) prediction 8 = 1; this and our value v -- 0.640 constitute additional evidence 
that lattice animals with and without loops belong to the same universality class. The 
advantage of the scanning method for trees should be emphasised. ( i )  The sampled 
configurations are statistically independent and therefore the statistical error can be 
estimated by the Schmidt procedure using standard statistical methods. The other 
simulation techniques are of a relaxation type and therefore the generated configur- 
ations are correlated. This correlation can safely be removed with the grand canonical 
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(GC)  method (Berretti and  Sokal 1985, Caracciolo and Glaus 1985) where bonds are 
added to the chain or removed from it during the simulation. However, this is not the 
case with the canonical ensemble ( C E )  type techniques which only allow bonds to 
change places (Stauffer 1978, Seitz and Klein 1981, Dickman and Schieve 1984). ( i i )  
With the scanning method the chain probability is always known and hence the entropy 
can be calculated. In general, it is very difficult to estimate the entropy with both the 
GC and C E  methods. However, for the special case in which the scaling relation (3) 
holds the entropy can also be obtained with the GC method using a nice procedure 
suggested by Berretti and  Sokal (1985). (iii) The scanning method enables one to 
study geometrical properties which depend on time. It is of interest to compare the 
efficiency of the scanning method to that of the cc and C E  techniques. The average 
number of bonds of the SAT in our grand canonical sample is (N)"-60  (see (7) and 
(26)) as compared to 40 obtained by Caracciolo and Glaus (1985). This means that 
we have generated larger trees. We have used N c 60 for the calculation of the entropy, 
N S 90 for the gyration radius and N s 110 for estimating y, and v,. Lattice animals 
of comparable size, N - 100 bonds, have been generated by C E  techniques for d = 2 
and 3 (Stauffer 1978, Peters et a1 1979, Dickman and  Schieve 1984) and slightly larger 
clusters of N - 150 have been simulated by Gould and  Holl (1981 ). Seitz and Klein 
(1981), on the other hand, generated significantly larger SAT of N = 600. However, it 
is not clear whether their sample is uncorrelated. The efficiency of our method for 
generating larger SAT can further be improved by developing algorithms which enable 
one to calculate transition probabilities for larger groups of tips and a larger scanning 
parameter b. Finally it should be noticed that the scanning procedure developed here 
can also be applied to SAT in larger dimensions ( d  > 2),  to branched polymers with 
finite interactions (Derrida and  Herrmann 1983, Dickman and Schieve 1986) and  to 
random surfaces. On the other hand, in order to study branched polymers with a fixed 
number of branches, such as stars or proteins, it would be more convenient to work 
in the canonical ensemble, using a modified version of the present scanning procedure. 
Such a procedure would also be suitable for treating systems of many-linear chains, 
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